STEADY FREE CONVECTION IN VISCOPLASTIC LIQUIDS

Z. P. Shul'man, E, A, Zal'tsgendler, UDC 536.25:532.135
and V. I. Baikov

The formulation and solution are given for the external problem of the steady free convection
of a viscoplastic liquid.

The widespread application of non-Newtonian liquids in various processes of chemical technology and
power engineering is responsible for the heightened interest in processes of heat exchange in these media,
particularly during free-convective motion. Up to now the problem of free convection under the conditions
of the external problem has mainly been examined only in nonplastic liquids [1, 2]. However, many indus-
trially important media arecharacterizedby a fini. > yield.. point, i.e., they display plastic properties. In
the single report known to us [3] which is devoted to an examination of free convection in a viscoplastic
liquid under the conditions of the external problem the formulation of the problem is incorrect, since it
does not take into account a specific property of these media: the finiteness of the region of flow. The
formulation and the method of solution of problems of free-convective motion in viscoplastic liquids are
given in the present report. ’

Let us examine the free convection near a vertical cylinder of constant radius submerged in a Schvedo—
Bingham viscoplastic liquid. It follows from physical considerations that with steady free-convective mo-
tion of a viscoplastic liquid the entire region under consideration in the general case can be divided into five
zones: I) viscoplastic flow (8u/dy > 0); II) quasisolid motion (Bu/dy =0); III) viscoplastic flow (@u/dy < 0); IV)
viscoplastic flow (@u/8y =0, 8=0); V) stationary liquid @ =0) (Fig. 1).

The dimensionless equations of motion, continuity, and energy in the boundary-layer approximation
for a coordinate system connected with the surface of the body have the form (it is assumed that the thick-
ness of the boundary layer is much less than the radius of the cylinder):
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Fig. 1. Diagram of flow.
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Fig. 2. Characteristic curves of heat exchange and friction

as functions of: a) the plasticity parameter R[A = (1.33 - 10%)!/4)
b) the longitudinal coordinate (R =0,004, Gr =10%.
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The results of [4, 5] on the forced flow of viscoplastic li-
quids were used in the derivation of the system of equations

H-@®).

0

a ? . The parameter R=T1y/prBg(T; — Tw) which was introduced
Fig. 3. Coordinates i, and 5, of characterizes the ratio of the plastic (yield point) and buoyant
boundaries as functions of the plas- (Archimedes) stresses. This parameter has a determining signi-
ticity parameter R[A = (1.33 - 10541, ficance in the free-convective motion of viscoplastic liquids,

. Free convection in viscoplastic liquids is characterized by the essentially finite region of the flow
which, as is known, prevents one from finding completely self-similar solutions. A locally self-similar
solution of the problem is constructed in the present work. This method is widely used in problems of the
free-convective motion of purely viscous media {6, 7].

Through the introduction of new dependent and independent variables
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where the stream functions are determihed_ by the equations
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the problem (1)-(8).in the approximation of local self-similarity is reduced to the following problem
Zonel (0 <n<ny):
- .2
fo + i — —3—(fl)’+R+91= 0;

. . ©
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6,=0; 6;=0 at n=n
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ZonelV. f13< n =mny):

fl+nﬁ—~%-mﬁ~R:o, (15)

boundary conditions:

fo=1s f4—f3v f4 fsbat n="1s

=0, fi=0 at n=n, a6
where the prime denotes differentiation with respect ton, and A= (4x,/3Gr)1/4.
It follows from physical considerations that in the guasisolid zone u, =const(y), from which fif) =
f{t11) =const, Consequently,
fa () = f (1) + Fi () (n—my). an

The numerical solution of problem (9)-(16) with allowance for the condition (17) was obtained on a Minsk-

22 computer. Some results of the calculations are presented in Figs. 2-3. Both the heat exchange and

the friction at the surface of the heater increase with greater distance from the leading edge of the cylin-

der (Fig. 2). In addition, it follows from Fig. 2b that the approximation of local self-similarity is well

justified, since with a variation of two orders of magnitude in the longitudinal coordinate we have
A[—8'(x, 0)]x, AP, O)xy

<< 0,003; < 0,015.
[— 8 (x, O)] x, ' (x, 0)x,

Intensification of the plastic properties (an increase in the parameter R) leads to suppression of the
free-convective motion, i.e., to a sharp decrease in both the heat-exchange andthe friction characteristics
(Fig. 2a), with the width of the quasisolid zone (A =7, —ny) increasing as this happens (the rate.of growth
is especially noticeable for small R) (Fig. 3). It follows from physical considerations that the thickness
of zone II remains finite upon approach to the leading edge, i.e., the motion takes place in a zone of non-
zero thickness as x—0, which is an important difference from the flow pattern in a purely viscous medium.
We should note that the presence of two quasisolid zones in the free-convective flow of viscoplastic media
qualitatively differentiates this type of flow from external problems of forced convection. Moreover, in
forced convection because of the infinite stresses in the region of the leading edge of the body the thickness
of the zone in which the velocity differs from the velocity of the external flow (quiescence for the case of
the movement of a body in a stationary medium) approaches zero, which once again differs qualitatively
from the case of free-convective motion,

NOTATION

x=x'/L, y= y'/L(Gr1/4) dimensionless coordinates; x', y', dimensional coordinates; u=u'{L8g(T;~—
T 17V2; v=v'[LBg(Ty — Tw)]” 1/2Gyl/t, dimensionless velocities; L, characterlstlc size; B, volumetric
expansmn coefficient; Pr —upcp/\ modified Prandtl number; Gr=(o/u )2 L Bg(TO ~ T,}, Grashof number;

@=(T — T,)/(Ty — T.), dimensionless temperature; Ty, Tw, temperature at wall and asy — «, respectively;
74, yield point; Hp plastic viscosity.

LITERATURE CITED

1. A. J. Ede, An Introduction to Heat Transfer; Principles and Calculations, Pergamon Press, New
York (1967).

2. J. D. Dale and A. F. Emery, Teploperedacha, No. 1 (1972).

3. J. Kleppe and W. J. Marner, Teploperedacha, No. 4 (1972).

4. I. M. Astrakhan, Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, Mekh, Mashinostr., No, 2 (1960).
5. Z. P. Shul'man and V. I. Baikov, BelSSR, Ser. Fiz.-Energet. Nauk, No. 1 (1971)

6. V. Kubari and D, C. Pei, Int. J. Heat Mass Transfer, 11, 855 (1969).

7. G. Wilks, Int. J. Heat Mass Transfer, 16, No. 10 (1973).

573



